Domain boundary formation in helical multishell gold nanowires.
نویسندگان
چکیده
Helical multishell gold nanowires are studied theoretically for the formation mechanism of the helical domain boundary. Nanowires with a wire length of more than 10 nm are relaxed by quantum mechanical molecular dynamics simulation with a tight-binding form Hamiltonian. In the results, non-helical nanowires are transformed into helical ones with the formation of atom pair defects at the domain boundary, where the defective atom pair is moved from an inner shell. Analysis of local electronic structure shows a competitive feature of the energy gain of reconstruction on the wire surface and the energy loss of the defect formation. A simple energy scaling theory gives a general explanation of domain boundary formation.
منابع مشابه
Domain boundary formation in helical multishell gold nanowire
Helical multishell gold nanowire is studied theoretically for the formation mechanism of helical domain boundary. Nanowires with the wire length of more than 10 nm are relaxed by quantum mechanical molecular dynamics simulation with tight-binding form Hamiltonian. In results, non-helical nanowires are transformed into helical ones with the formation of atom pair defects at domain boundary, wher...
متن کاملTwo-stage formation model and helicity of gold nanowires.
A model for the formation of helical multishell gold nanowires is proposed and is confirmed with quantum mechanical molecular dynamics simulations. The model can explain the magic number of the helical gold nanowires in the multishell structure. The reconstruction from ideal nonhelical to realistic helical nanowires consists of two stages: dissociations of atoms on the outermost shell from atom...
متن کاملStable nanobridge formation in h110i gold nanowires under tensile deformation
We present atomistic simulations of h110i oriented gold nanowires under tensile deformation. We find that h110i gold nanowires tend to form elongated, stable nanobridges upon necking, which is in agreement with previous experimental observations. In addition, the simulations reveal that the formation of a high strength multishell lattice structure during the plastic deformation of the h110i wir...
متن کاملFormation of chiral branched nanowires by the Eshelby Twist.
Manipulating the morphology of inorganic nanostructures, such as their chirality and branching structure, has been actively pursued as a means of controlling their electrical, optical and mechanical properties. Notable examples of chiral inorganic nanostructures include carbon nanotubes, gold multishell nanowires, mesoporous nanowires and helical nanowires. Branched nanostructures have also bee...
متن کاملCore/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes.
We report the growth and characterization of core/multishell nanowire radial heterostructures, and their implementation as efficient and synthetically tunable multicolor nanophotonic sources. Core/multishell nanowires were prepared by metal-organic chemical vapor deposition with an n-GaN core and InxGa1-xN/GaN/p-AlGaN/p-GaN shells, where variation of indium mole fraction is used to tune emissio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 21 27 شماره
صفحات -
تاریخ انتشار 2009